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Abstract—The development of High-level programming 
languages(HLPL) is a long process of evolution, which has gone 
through procedure-oriented languages, object-oriented languages, 
script languages and visual & database languages. Throughout 
the process of evolution, coding in an efficient and convenient 
way is the primary impetus. Hence, the productivity should vary 
across different languages. When evaluating the productivity of 
developers coding in different programming languages, such 
variations are usually ignored, which may not reflect their actual 
coding efficiencies and make the developers feel unfair. 
Especially, ignoring the variations will lead to inappropriate 
baselines of process performance, thus may potentially reduce 
the effectiveness of quantitative management. In this paper, we 
conducted an empirical study to revisit the productivity 
variations across different programming languages based on the 
data of International Software Benchmarking Standards Group 
(ISBSG) and a software organization. We found that, in most 
language categories, the productivity is all significantly different 
in ISBSG and the organization respectively. In the software 
industry represented by ISBSG, the relative productivity levels 
are gradually increasing with the evolution of HLPL. However, 
for the organization, it does not always keep the same increasing 
trend, but the average productivity within the four categories is 
almost stable. The finding could guide the software organization 
to establish an appropriate productivity baseline. 

Keywords—Productivity variations; HLPL; PO; OO; SL; VD; 
Function Points; Lines of code. 

I.  INTRODUCTION 
Productivity is the most fundamental and crucial 

measurement to access the production efficiency of software 
organizations. It can be used for tactical reasons such as cost 
estimation and project scheduling. It can also be used to 
evaluate the capability of developers to produce software. 
Existing studies show that the average size of function points is 
significantly different across languages [3]. When comparing 
the productivity of developers who code in different languages, 
the impact of programming languages should be taken into 
consideration. Otherwise, the collected productivity may not 
reflect their actual performances. For example, two developers 
spent the same time on two tasks. One developer produced 500 
lines of code for Linux Kernel optimization in C language, 
while another developer produced 5000 lines of code for web 
UI in HTML language. If the productivity variations between C 
and HTML language are not considered, the productivity of the 

second developer is 10 times higher than the first one. But, 
indeed, the programming performances and the contributions 
of these two developers might be quite similar.  

In fact, the programming languages have evolved into more 
convenient and effective versions since the first generation 
languages. More than 1000 programming languages have been 
invented. Do some of them have approximate productivity? If 
we classify the languages with approximate productivity into 
the same group, will the productivity be significantly different 
across groups? Addressing the above concerns is the primary 
purpose of this study. In this paper, we performed an empirical 
study on the ISBSG dataset that contains productivity data 
from a large number of software companies, and a real world 
process dataset, which contains the productivity data of an 
individual organization the research and develop center in 
Institute of Software Chinese Academy of Sciences (RDCIOS). 
We divided HLPL into four categories based on their evolution, 
and explored their productivity differences. We performed the 
empirical study based on three research questions as follows: 

RQ1: Whether the productivity for the four language 
categories is significantly different? 

• RQ1.1: Is the productivity across the four language 
categories significantly different in the software 
industry and the individual organization respectively?  

• RQ1.2: Is the productivity within each language 
category significantly different in the software industry 
and the individual organization respectively?  

RQ2: What are the relative productivity levels of the four 
language categories for the software industry and individual 
organizations respectively? 

RQ3: Regarding an individual organization, can the 
productivity performance baseline be established based on the 
four categories to support statistical process control? 

The main contributions of this paper are as follows:  
(I) Our study shows that the programming productivity 

varies with the evolution of HLPL in ISBSG and RDCIOS. 
Within each language category, the productivity of most 
programming languages has no significant difference. The 
results can indicate which languages are comparable, and 
which are not. Such differences also show that the four 
categories of HLPL are reasonable.  

(II) In the scope of software industry, the relative 
productivity levels are gradually increasing with the evolution 
of HLPL. However, for the organizations, they don’t always 
keep the same increasing trend. It means that the organizations 

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.60

526

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.60

526

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.60

526



should establish the productivity baselines based on their own 
data, rather than simply adopt the industry baseline.  

(III) We present an example about how to build the 
productivity baselines based on the four new categories. The 
generated baselines are useful to improve the quantitative 
management for organizations. 

The rest of this paper is organized as follows. Section II 
presents the experiment setup. Section III shows the empirical 
analysis, Section IV presents the possible threats. Section V 
introduces related work. Section VI concludes and discusses 
future work. 

II. EXPERIMENT SETUP 
In this section, we introduce the subjects of the study, the 

categories of programming languages, the metrics of 
productivity, and the process of data preparation. 

A. Subjects  
The subjects of the study include the software industry 

ISBSG and the individual organization RDCIOS. 
ISBSG dataset is one of the most extensive SE datasets. It 

contains productivity data from software development projects 
of different countries and different domains. In China, there is 
a non-profit organization, called Beijing Software Cost 
Evaluation Alliance(BSCEA), which is responsible for 
collecting data from Chinese software industry. We referred 
the combined data from ISBSG and BSCEA as ISBSG. We 
used ISBSG as the industry data.  

Besides industry dataset from ISBSG, we also investigated 
one individual organization RDCIOS. RDCIOS uses 
SmartDev, which is a software development support platform 
developed by RDCIOS, to manage and monitor their projects. 
There are more than 300 developers collaborating via this 
platform and more than 100 projects are maintained in 
SmartDev.  

B. Programming Language Categories 
Programming languages have evolved from the first 

generation into the fifth generation [8]. The first generation 
languages (1GL) are called machine languages. The second 
generation languages (2GL) are assembly languages. The third 
languages (3GL) belong to high-level languages, which include 
hundreds of different languages that are widely used by 
programmers nowadays. The fourth generation languages (4GL) 
refer to the languages that aim to provide a higher level of 
abstraction to the internal computer hardware details. Moreover, 
some researchers proposed the fifth generation languages(5GL), 
which are mainly used in artificial intelligence research to build 
specific programs. But they are still in the research stage. 

Obviously, the productivity of 3GL and 4GL is much 
higher than 1GL and 2GL [8] [10]. In practices, the boundary 
between the 3GL and 4GL is quite blurry. The 4GL inherited 
most of characteristics of 3GL. While some advanced 3GL like 
Python, Ruby, and Perl, combined some features of 4GL in the 
general-purpose environment of 3GL. Libraries with the 
features of 4GL have been developed for most popular 3GL. 

In our study, we focused on investigating the productivity 
differences both in 3GL and 4GL languages. HLPL mainly 
refer to the 3GL and 4GL[7,9]. Considering the blurred 
boundary between 3GL and 4GL, we revisited the 

programming languages by classifying them into four new 
categories based on the evolution of HLPL [7, 8, 10]:  

• Procedure-Oriented (PO) Languages: the early 3GL 
languages are used for writing programs that are more 
or less independent from a particular type of computer, 
called procedure-oriented languages. This category 
includes Basic, C, COBOL, FORTRAN, etc. The PO 
languages belong to compiled languages[9]; 

• Object-Oriented (OO) Languages: after PO languages, 
OO languages emerged as the 3GL, which are used for 
supporting a programming paradigm based on the 
concept of “object”, such as: C++, Java, C# and Ada. 
The OO languages belong to compiled languages too;  

• Script Languages (SL) Languages: script languages are 
designed to support scripting special run-time 
environments that can automate the executions of 
tasks. They already have some features of 4GL, for 
example, they don’t need to be compiled to produce 
results. Javascript, Python, Ruby, Perl are popular 
used. The SL languages usually refer to interpreted 
languages[9,10]. 

• Visual and Database (VD) Languages: The VD 
languages are designed for facilitating the development 
of web page and the access to database, such as T-
SQL, HTML, JSP, etc.  

C. Metrics  
In ISBSG, the size of software projects is measured by 

Function Point (FP), and the development effort is measured by 
Personal Hours (PH). Therefore, we define the productivity Pfp 
as follows.  

 =
pointsfuntion 

effort developing
fpP  (1) 

In RDCIOS, the size of software projects is measured by 
lines of code, and the related time is recorded. Therefore, we 
define the productivity Ploc as follows, t denotes the given time, 
such as an hour, a week.  

 
t

 lines code=locP   (2) 

Although the equations of productivity are different for the 
two datasets, both metrics can reflect the level of productivity 
for each dataset. It is safe to draw conclusions towards 
productivity differences based on these two metrics.  

D. Data Preparation  
In this section, we describe how we collect and prepare data 

from ISBSG and RDCIOS. 
1) ISBSG 

The dataset of ISBSG covers a wide variety of the software 
industry, which spans 27 years, including 8,113 projects. 
97.5% projects could measure the productivity by Pfp, and most 
projects were developed by simple language. The information 
of the original dataset is shown in TABLE I.  

The process of data collection includes two steps. First, we 
excluded the data according to the two criteria: (I) projects that 
are rated as C or lower score in terms of data quality levels that 
are provided by ISBSG [5]. (II) projects that have abnormal 
productivity (Pfp > 100). 
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TABLE I.  THE DATASETS INFORMATION OF ISBSG 

Original Dataset Filtered Dataset 
Time Span 1989-2016 PO 1218  
Dataset Size 8113  OO 1486 
Projects 8113 SL 191 
Languges > 100 VD 606 
  Sum 3501 

TABLE II.  THE DATASETS INFORMATION OF RDCIOS 

Original Dataset Filtered Dataset 
Time Span 2016.8-2017.5 PO 100 
Dataset Size 4087commits OO 210 
Projects 181 SL 379 
Languges 12 VD 51 
  Sum 740 

According to the exclusion criteria, 56.8% projects are 
filtered out. We further divided the data into four groups 
according to the four language categories introduced in section 
II-B. The final dataset contains 3501 records as shown in 
TABLE I. Each record denotes the productivity of each project, 
measured by hours per function point (PH/FP). 

2) RDCIOS  
In RDCIOS, the developers submitted their codes to 

SmartDev via commits. Developers recorded the time they 
spent on each commit by appending the effort expression (e.g., 
“effort=8”) to the commit message. SmartDev can 
automatically collect effort data from commit messages. By 
leveraging this functionality, we can conveniently collect the 
productivity data of each commit. 

The process of data collection is as follows: First, we 
selected the projects, and collected the commit data to obtain 
the original dataset. We selected the projects based on two 
criteria: (I) highly active projects; (II) the source codes are 
well-managed in SmartDev.  

Then we collected all the commits of the selected projects 
from Git repository by executing ‘git diff’, and collected the 
effort data for each commit. We only collected the commits 
that contain the effort information. Because the productivity is 
measured based on codes in RDCIOS, we also excluded the 
commits that mainly contain documents, and quite few codes. 
In total, 4087 commits were collected as shown in TABLE II.  

After obtaining the original dataset, we divided the dataset 
into four language categories, and calculated the individual 
productivity according to the Equation (2). The final dataset 
contains 740 records. Each record denotes the lines of code of 
individuals per hour (Loc/PH).  

III. EMPIRICAL AYALYSIS  
In this section, we present the empirical analysis on the 

three research questions. 

A. RQ1: Whether the productivity for the four language 
categories is significantly different? 
We answer the RQ1 from two aspects: whether the 

productivity differences across the four categories and within 
each category are statistically significant.  

Since the distribution of datasets is not normal, we apply 
the nonparametric Kruskal-Wallis test and Mann-Whitney test 
to check in ISBGSG and RDCIOS respectively. We use 95% 
as the confidence level. 

TABLE III.  THE RESULTS OF THE PAIRED-SAMPLES TEST IN ISBSG 

Group PO OO SL VD 
PO NA 0.0000 0.0000 0.0000 
OO    0.0110 0.0000 
SL    0.0346 
VD    NA 

TABLE IV.  THE RESULTS OF THE PAIRED-SAMPLES TEST IN RDCIOS 

Group PO OO SL VD 
PO NA 1.0000 0.0000 0.2135 
OO    0.0000 0.2135 
SL    0.2031 
VD    NA 

a. The statistically significant results are highlighted. 

1) RQ1.1: Is the productivity across the four language 
categories significantly different in the software industry and 
the individual organization respectively? 

a) ISBSG  
We first performed the Kruskal-Wallis test to check 

whether the productivity differs with different categories in 
ISBSG. The p-value equals to 0.00, which means that the 
productivity differences across the four categories are 
statistically significant.  

Then we used the Mann-Whitney test to investigate 
whether productivity between any paired categories is 
significantly different. The results are shown in TABLE III.  
We can see that the p-value for each two paired categories is 
less than 0.05. Therefore, the productivity is significantly 
different between any two categories. 

b) RDCIOS 
Similarly, we first checked whether the productivity differs 

with different categories. The p-value equals to 0.00, which 
means the productivity differences are significant across the 
four categories in RDCIOS. Then we performed the paired-
samples test, and the results are shown in TABLE IV. We 
observed that only the SL category significantly differs with 
the PO and OO categories. The VD category shows no 
difference with any other categories. 

Finding 1.1: regarding the four language categories, the 
programming productivity is significantly different across the 
four categories in ISBSG, but the SL category shows 
significant differences with the PO and OO categories in 
RDCIOS. It shows that the individual differences exist. If they 
simply use industry benchmark to conduct effort estimation 
without self-adjusted, the estimation variation will be too large 
to control. 

2) RQ1.2: Is the productivity within each language 
category significantly different in the software industry and 
the individual organization respectively?  

a) ISBSG  
We first carried out the Kruskal-Wallis test. The results are 

shown in TABLE V.   

TABLE V.  THE DIFFERENCES OF PRODUCTIVITY WITHIN EACH 
LANGUAGE CATEGORY IN ISBSG 

Item PO OO SL VD 
H 25.57  132.05   26.92   65.21   
p-value 0.000 0.000 0.008   0.000  

a. The statistically significant results are highlighted. 
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TABLE VI.  THE RESULTS OF THE PAIRED-SAMPLES TEST IN ISBSG 

PO  SL 

Language Cobol Easytr-
ieve Fortran Pascal PL/I ABAP Language Java- 

Script Natural Perl PHP Python Shell Unix  
Shell 

C 0.9345 0.1111 0.2571 0.0025 0.0025 0.0140 Groovy 0.2150 0.3260 0.052 0.1290 0.8170 0.973 0.031 
Cobol  0.1022 0.2711 0.0216 0.0000 0.0052 JavaScript  0.0050 0.020 0.0050 0.1990 0.015 0.003 
Easytrieve   1.0000 0.3429 0.5363 0.0091 Natural   0.140 0.1350 0.643 0.086 0.224 
Fortran    0.0828 0.8677 0.0386 Perl    0.6130 1.0000 0.050 0.207 
Pascal     0.0472 0.0073 PHP     1.0000 0.035 0.57 
PL/I      0.0000 Python      0.720 1.00 

ABAP      NA Shell       0.012 
Unix shell       NA 

OO  VD 

Lang-
uage C++ Java Power 

Builder 
Visual  
Basic 

Visual  
Studio  
.Net 

Visual 
FoxPro 

Lang-
uage 

ASP 
.Net Html Ingres JSP Oracle PL/ 

SQL Pro*C SQL 

C# 0.0270 0.000 0.0006 0.0010 0.010 0.0100 ASP 0.460 0.460 0.170 0.076 0.117 0.3109 0.0052 0.008 

C++  0.007 0.2322 0.0650 0.500 0.0700 ASP 
.Net  0.830 1.000 0.234 0.721 0.1775 0.5387 0.651 

Java   0.8643 0.3490 0.260 0.0900 Html   0.490 0.062 0.938 0.0899 0.1741 0.455 
Power 
Builder    0.7150 0.150 0.0500 Ingres    0.079 0.458 0.1554 0.3579 0.920 

Visual  
Basic     0.390 0.1200 JSP     0.030 0.2917 0.0413 0.037 

Visual 
Studio 
.Net 

     0.150 
Oracle      0.0001 0.0340 0.015 

PL/SQL       0.0073 0.000 

Visual 
FoxPro      NA Pro*C        0.369 

SQL        NA 
a. The statistically significant results are highlighted 

As shown in TABLE V. , the p-value is less than 0.05 in 
the four categories, which means that productivity differences 
within each language category are significant. Therefore, at 
least one language within each category differs with other 
languages. We further carried out the paired-samples test by 
using the Mann-Whitney test to find out the root cause. The 
detail results are shown in TABLE VI.   

In the PO category, we observed that the productivity of 
ABAP differs with other languages. This can be explained that 
the variation tested by using the Kruskal-Wallis test is mainly 
caused by ABAP. ABAP is not a popular language, which is 
designed primarily for business purposes. Most of other 
languages show no significant difference with each other in the 
PO category. In the OO category, we found that the 
productivity variation is mainly caused by C#. In the SL and 
VD categories, the p-value for most paired languages within 
each category is greater than 0.05, which means that the 
productivity is not significantly different between most paired 
languages in these two categories.  

Based the above statistical test, we can see that the four 
categories can distinguish HLPL by productivity. 

b) RDCIOS  
We first carried out the Kruskal-Wallis test. The results are 

shown in TABLE VII. The dataset of the PO category contains 
only C language, and cannot perform the Kruskal-Wallis test 
and Mann-Whitney test.  

We observed that the p-value is less than 0.05 in the other 
three categories, which means that there are large productivity 
differences of different languages within each category. At 
least one language differs with the others. Therefore, we further 
carried out the paired-samples test to find out the root cause. 

TABLE VII.  THE DIFFERENCES OF PRODUCTIVITY WITHIN EACH 
LANGUAGE CATEGORY IN RDCIOS 

Item OO SL VD 
H 6.52   49.91 9.13 
p-value 0.011   0.000   0.010  

a. The statistically significant results are highlighted 

TABLE VIII.  THE RESULTS OF THE PAIRED-SAMPLES TEST OF THE SL 
CATEGORY IN RDCIOS  

Language 
RDCIOS_SL 

IML Javascript PHP Python Ruby Shell 
IML NA 0.1438 0.1887 0.2409 0.4620 0.9614 
Javascript   0.5472 0.0431 0.0272 0.0000 
PHP    0.1415 0.0417 0.0000 
Python     0.2261 0.0000 
Shell      NA 

a. The statistically significant results are highlighted 

The OO category includes two languages: Java and C++. 
The p-value equals to 0.011. But C++ only has 10 items, its 
proportion accounts for less than 5% in this category. It implies 
that the effect of C++ on the OO category can be ignored.  

TABLE VIII. shows the results of the paired-samples test 
for the SL category. The productivity of shell differs with 
JavaScript, PHP and python. Likewise, we observed that the 
productivity of shell also differs with JavaScript, PHP in 
ISBSG.  

The VD category includes SQL, JSP and HTML languages, 
the p-value of any paired languages is all greater than 0.05, 
which means the productivity of different languages in the VD 
category shows no significant difference.  
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Finding 1.2: regarding the programming languages within 
each category, the productivity of most languages is not 
significant different between each other in ISBSG and 
RDCIOS respectively. But in ISBSG, ABAP and C# show 
significant differences with other languages within their related 
categories. 

B. RQ2: What are the relative productivity levels of the four 
language categories for the software industry and 
individual organizations respectively?   
We use the mean and coefficients of variation (CV) [4, 5] 

to reflect relative productivity levels of the four language 
categories for ISBSG and RDCIOS. To obtain the CV of each 
category, we divide the standard deviation by the mean. 
Relative productivity levels are calculated by the following two 
steps: (I) we set the productivity level of the PO group to 1; (II) 
given the mean of PO group m, we obtain the productivity 
level of other groups by dividing their means by m. Higher 
value indicates higher productivity levels.  

In RQ1.2, we found that ABAP and C# show significant 
differences with other languages within each category in 
ISBSG. There are 1218 items in the ISBSG dataset that belong 
to the PO category. Among the 1218 items, the proportion of 
ABAP items only accounts for 4.7%, which is relatively small 
compared to other languages. We compare the differences of 
the means and median between including and excluding ABAP 
in the PO group. The result shows that such differences are 
much small. Similarly, the proportion of C# items accounts for 
4.58% in the OO group with 1486 items. The items of C# also 
have little effect on the means and median of the OO group. 
Therefore, we calculate the means of the PO and OO groups 
based on the whole dataset. 

In RDCIOS, we also found that Shell shows significant 
differences with JavaScript, PHP and python. The proportion 
of Shell items accounts for 14.5% in the SL group with 379 
items. The mean of the SL group including and excluding Shell 
are 7.93 and 8.85 respectively. The variation is also small. 
Therefore, we calculate the mean of the SL group based on the 
whole dataset. Based on the above analysis, we calculate the 
population means of ISBSG and RDCIOS based on their whole 
datasets.  

Besides ISBSG and RDCIOS, we also compared our results 
with the productivity of three related studies: IBM2013, 
reported by Capers Jones [4], ISBSG2012, reported by Andrew 
Binstock [25], and ISBSG2016, reported by Luigi Lavazza [5]. 
Capers Jones reported IBM software productivity of a few 
popular programming languages based on the data of projects 
in IBM before 2013. The productivity was measured by 
function points per month. Base on the ISBSG dataset, Andrew 
Binstock and L. Lavazza performed an empirical study on the 
productivity of programming languages in 2012 and 2016 
respectively. They also selected a few popular languages.  

From the three related studies, we can obtain the 
productivity of programming languages, measured by function 
points per time. Then we divided the data into the four 
language categories, and calculated their productivity levels 
and CV. Considering the productivity measured by different 
metrics, we converted the productivity measured by personal 
hours per function point (PH/FP) to function points per 
personal hour (FP/PH) to keep a consistent format. As the 

datasets from existing literatures don’t include raw data, only 
contain average productivity of programming languages, we 
didn’t calculate the CV for those datasets. 

TABLE IX. shows the output of the productivity levels and 
CV in the software industry and individual organizations. 
ISBSG2012 and ISBSG2016 do not provide data of the SL 
group. Since the population means of datasets in the software 
industry and individual organizations are all reasonable, we 
further explore whether the productivity levels of four 
categories are significant different by comparing relative 
productivity levels and CV. 

The comparison of relative productivity levels: Fig. 1 
shows the comparison of productivity levels between the 
software industry and the individual organizations. We can 
observe that: (I) with the evolution of HLPL from the PO to the 
VD category, the productivity generally becomes more 
productive in the software industry. However, there is a 
difference in individual organizations that: the productivity of 
the SL category is declining. (II) The two individual 
organizations present a quite similar trend of productivity 
levels in the last three categories. However, in RDCIOS, the 
PO category is the highest productive category, but in IBM, the 
PO category is the lowest one. 

TABLE IX.  THE SUMMARY REPORT AND PRODUCTIVITY LEVELS FOR THE 
FOUR LANGUAGE CATEGRORIES  

Dataset Item PO OO SL VD 

ISBSG 

Mean[PH/FP] 16.507 13.645 9.75  9.56  
Converted 
Mean[FP/PH] 0.061 0.073 0.103 0.105 

Levels 1.00  1.21 1.69 1.73 
StDev 15.954 14.548 8.32  10.58  
CV 96.65% 106.62% 85.33% 110.67% 

RDCIOS 

Mean[Loc/PH] 13.11  12.55  8.85  10.57  
Levels 1.00  0.96  0.68  0.81  
StDev 23.41  15.48  17.60  12.55  
CV 178.57% 123.40% 198.81% 118.74% 

IBM 
2013 

Size 7 10 6 5 
Mean[FP/PM] 7.273 11.50  9.27  11.26  
Levels 1.00 1.58 1.27 1.55 

ISBSG 
2012 

Size 4 4 NA 2 
Mean[PH/FP] 15.98  11.75 NA 8.45  
Converted 
Mean[FP/PH] 0.063 0.085 NA 0.118 

Levels 1.00  1.36 NA 1.89 

ISBSG 
2016 

Size 3 4 NA 2 
Mean[FP/PM] 18.53 19.35 NA 25.85] 
Levels 1.00  1.04 NA 0.94 

 

 
Fig. 1. The comparison of productivity levels of thefour language categories  
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Fig. 2. The CV comparison of the four language categories  

The comparison of CV: Fig. 2 shows the comparison of 
CV between ISBSG and the organization RDCIOS. We can 
observe that RDCIOS has higher CV than ISBSG, which 
indicates that data size in ISBSG is much more concentrative 
and the dispersion is small, while the RDCIOS data looks more 
disperse. The reason is that continuous process improvement 
has improved its productivity since 2017. 

Finding 2: The results strongly indicate that: in the scope 
of the software industry, the relative productivity levels are 
gradually increasing with the evolution of HLPL. However, the 
individual organizations don't always keep the same increasing 
trend. For both individual organizations, the productivity of SL 
category is declining, and they have similar trends of relative 
productivity levels except for the PO category. In addition, the 
CV of RDCIOS shows larger than ISBSG, especially in the PO 
and SL categories. 

C. RQ3: Regarding an individual organization, can the 
productivity performance baseline be established based on 
the four categories to support statistical process control? 
Many software organizations conduct effort estimation 

based on their productivities. Particularly, a CMMI-adopted 
organization needs to establish the process performance 
baseline to support quantitative management. In RQ1 and RQ2, 
we observed that individual differences existed between the 
software industry and the individual organization both in 
productivity differences and relative productivity levels across 
the four language categories. It indicates that software 
organizations need to establish the productivity baselines based 
on their own data, rather than simply adopt the industry 
baseline. Proper productivity baselines can support the 
statistical process control. In RQ3, we aim to illustrate whether 
the individual organization can establish its productivity 
baseline based on the four language categories.  

We applied mean and standard deviation charts (Xbar-S) to 
establish the Statistical Process Control (SPC) of personal 
average productivity. The process of constructing dataset for 
the Xbar-S charts includes: (I) we considered lines of code per 
week as the productivity metric. We obtained the individual 
weekly productivity for each category. (II) Most projects in 
RDCIOS adopted the agile development model, and took one 
month as a milestone, which included requirement analysis, 
design, coding and test. Therefore, we calculated the average 
productivity of each successive four weeks as a control point. 
Each control point denotes the productivity per month, 
measured by lines of code per week. The Xbar-S charts of the 
four language categories are shown Fig. 3.   

 
Fig. 3. The Xbar-S Charts of the four language categories in RDCIOS 
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We can observe that: (I) the productivity fluctuations of the 
four language categories are balanced in the first several 
months, which means that the control mean of each language 
category is statistically meaningful. Therefore, the individual 
organization can generate its productivity baseline by using the 
average productivity. (II) the productivity has improved 
obviously in the last few months. The baseline may be updated 
if the upward trend is kept. 

Finding 3: The statistical process control shows that the 
programming productivity of the four language categories is 
mostly stable. The average productivity of the four language 
categories can be used to establish a productivity baseline for 
the investigated organization. 

IV. THREATS TO VALIDITY 
Threat to internal validity lies on experimental bias. In 

ISBSG, the highest quality data and project size measured by 
function points, are rated by ‘A’, followed by ‘B’,’C’ and ‘D’. 
To keep the data in a high quality, we selected the data rated by 
‘A’ or ‘B, and quality of project size rated by ‘A’ or ‘B’. In 
RDCIOS, we measured productivity of the organization based 
on the lines of code, without considering the documents, which 
may not reflect the productivity comprehensively. Therefore, 
we excluded the commits that mainly contain documents, and 
quite few codes. 

Threat to external validity is related to the generalizability 
of our findings. In this work, we analyzed productivity of 
different languages in software industry ISBSG and the 
individual organization RDCIOS. Although we collected data 
from real-world datasets, the findings may not be generalizable 
to all the other software organizations. The more stable the 
process is, the more general the productivity baseline becomes. 

V. RELATED WORK 
Literatures related to the productivity of programming 

languages mainly focus on two aspects: (I) the metrics of 
productivity. (II) The variations across different languages. 

A. The Metrics of Productivity 
Different researchers used different metrics to measure 

productivity. Petersen [13] performed a systematic review on 
the measurements and predictions of software development 
productivity, which focused on quantifiable approaches, such 
as metric spaces and data envelopment analysis. In [11] authors 
investigated productivity metrics in agile software development, 
including source lines of code per time, function points tasks 
completed per time. Other approaches have been proposed, 
including productivity metrics based on different development 
roles [14], productivity measure by resolved issues per month 
[12]. In summary, lines of code and function points are largely 
used when measuring productivity. Function points work well 
when measuring productivity for projects that requirements are 
well documented and stable [21].  

B. The variations across different languages 
Previous studies investigated the variations across different 

languages mainly based on three aspects: productivity, 
development and maintenance. Premraj et al. proved that the 
choice of the most appropriate programming language could 
affect their productivity and final development costs [6]. 

Sebastian Nanz et al. [17] performed an empirical study to 
investigate which language makes developers more productive; 
Myrtveit et al. investigated whether development in C++ was 
more productive than development in C [20]; In [3] authors 
explored the lines of code of different languages per function 
point. Similarly, C. Jones [2] analyzed the productivity levels 
of different languages, which was enriched in 2013 to refine 
further productivity of the languages based on data of IBM 
projects [4].  

Another two studies [25, 5] analyzed productivity levels 
based on the ISBSG dataset in 2012 and 2016 respectively, 
which are very similar to our study, but only analyzed a few 
popular languages. In addition, a few studies [19, 21, 22] 
investigated whether programming languages affected 
productivity in Open Source projects. For the development and 
maintenance variations, some studies [1, 15, 16] compared the 
development performances of different languages from various 
aspects: program length, runtime efficiency, etc. Other studies 
focused on the challenging and pressures when the 
programming languages upgraded [23], quantifying the impact 
of programming languages on software development and 
maintenance 18], and investigating the impact of programming 
languages choices on the maintainability of OSS projects [24]. 

Some studies show that the productivity varies among 
different programming languages. But little research work has 
been done to consider the programming language categories 
and comprehensively analyze the productivity variations across 
different languages. Our work fills that gap. 

VI. CONCLUSION AND FUTRUE WORK 
In this paper, we proposed a classification to divide HLPL 

into four categories based on their evolution, and revisited their 
productivity variations in ISBSG and RDCIOS. The results 
show that: (I) the programming productivity varies across the 
four categories in ISBSG and RDCIOS, which shows that the 
four categories of HLPL are reasonable. (II) Individual 
differences exist between ISBSG and RDCIOS. In ISBSG, the 
relative productivity levels are gradually increasing with the 
evolution of HLPL. However, in RDCIOS, it does not always 
keep the same increasing trend. (III) We present an example to 
illustrate that the productivity baseline can be established based 
on the four categories for RDCIOS and the statistical process 
control can be applied based on its baseline. These results can 
help managers better understand the programming productivity 
variations across different languages, and guide the software 
organizations to establish their productivity baselines, rather 
than simply adopt the industry baseline. The established 
baselines can support the quantitative management for 
organizations. 

In RDCIOS, we analyzed the productivity only based on 
submitted codes. In the future, we plan to investigate the 
submitted document-products at the same time. In addition, we 
also plan to establish the relationship between submitted 
products and the tasks created in JIRA to analyze the 
productivity of different types of issues. 
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