
An Empirical Study To Revisit Productivity Across Different
Programming Languages

Yingling Li , Lin Shi ,Jun Hu ,Qing Wang , Jian Zhai
Laboratory for Internet Software Technologies, Institute of Software, Chinese Academy of Sciences, Beijing, China

State Key Laboratory of Computer Sciences, Institute of Software, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences , Beijing, China
{yingling, shilin, hujun, wq, zhaijian}@itechs.iscas.ac.cn

Abstract—The development of High-level programming
languages(HLPL) is a long process of evolution, which has gone
through procedure-oriented languages, object-oriented languages,
script languages and visual & database languages. Throughout
the process of evolution, coding in an efficient and convenient
way is the primary impetus. Hence, the productivity should vary
across different languages. When evaluating the productivity of
developers coding in different programming languages, such
variations are usually ignored, which may not reflect their actual
coding efficiencies and make the developers feel unfair.
Especially, ignoring the variations will lead to inappropriate
baselines of process performance, thus may potentially reduce
the effectiveness of quantitative management. In this paper, we
conducted an empirical study to revisit the productivity
variations across different programming languages based on the
data of International Software Benchmarking Standards Group
(ISBSG) and a software organization. We found that, in most
language categories, the productivity is all significantly different
in ISBSG and the organization respectively. In the software
industry represented by ISBSG, the relative productivity levels
are gradually increasing with the evolution of HLPL. However,
for the organization, it does not always keep the same increasing
trend, but the average productivity within the four categories is
almost stable. The finding could guide the software organization
to establish an appropriate productivity baseline.

Keywords—Productivity variations; HLPL; PO; OO; SL; VD;
Function Points; Lines of code.

I. INTRODUCTION
Productivity is the most fundamental and crucial

measurement to access the production efficiency of software
organizations. It can be used for tactical reasons such as cost
estimation and project scheduling. It can also be used to
evaluate the capability of developers to produce software.
Existing studies show that the average size of function points is
significantly different across languages [3]. When comparing
the productivity of developers who code in different languages,
the impact of programming languages should be taken into
consideration. Otherwise, the collected productivity may not
reflect their actual performances. For example, two developers
spent the same time on two tasks. One developer produced 500
lines of code for Linux Kernel optimization in C language,
while another developer produced 5000 lines of code for web
UI in HTML language. If the productivity variations between C
and HTML language are not considered, the productivity of the

second developer is 10 times higher than the first one. But,
indeed, the programming performances and the contributions
of these two developers might be quite similar.

In fact, the programming languages have evolved into more
convenient and effective versions since the first generation
languages. More than 1000 programming languages have been
invented. Do some of them have approximate productivity? If
we classify the languages with approximate productivity into
the same group, will the productivity be significantly different
across groups? Addressing the above concerns is the primary
purpose of this study. In this paper, we performed an empirical
study on the ISBSG dataset that contains productivity data
from a large number of software companies, and a real world
process dataset, which contains the productivity data of an
individual organization the research and develop center in
Institute of Software Chinese Academy of Sciences (RDCIOS).
We divided HLPL into four categories based on their evolution,
and explored their productivity differences. We performed the
empirical study based on three research questions as follows:

RQ1: Whether the productivity for the four language
categories is significantly different?

• RQ1.1: Is the productivity across the four language
categories significantly different in the software
industry and the individual organization respectively?

• RQ1.2: Is the productivity within each language
category significantly different in the software industry
and the individual organization respectively?

RQ2: What are the relative productivity levels of the four
language categories for the software industry and individual
organizations respectively?

RQ3: Regarding an individual organization, can the
productivity performance baseline be established based on the
four categories to support statistical process control?

The main contributions of this paper are as follows:
(I) Our study shows that the programming productivity

varies with the evolution of HLPL in ISBSG and RDCIOS.
Within each language category, the productivity of most
programming languages has no significant difference. The
results can indicate which languages are comparable, and
which are not. Such differences also show that the four
categories of HLPL are reasonable.

(II) In the scope of software industry, the relative
productivity levels are gradually increasing with the evolution
of HLPL. However, for the organizations, they don’t always
keep the same increasing trend. It means that the organizations

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.60

526

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.60

526

2017 24th Asia-Pacific Software Engineering Conference

978-1-5386-3681-7/17 $31.00 © 2017 IEEE

DOI 10.1109/APSEC.2017.60

526

should establish the productivity baselines based on their own
data, rather than simply adopt the industry baseline.

(III) We present an example about how to build the
productivity baselines based on the four new categories. The
generated baselines are useful to improve the quantitative
management for organizations.

The rest of this paper is organized as follows. Section II
presents the experiment setup. Section III shows the empirical
analysis, Section IV presents the possible threats. Section V
introduces related work. Section VI concludes and discusses
future work.

II. EXPERIMENT SETUP
In this section, we introduce the subjects of the study, the

categories of programming languages, the metrics of
productivity, and the process of data preparation.

A. Subjects
The subjects of the study include the software industry

ISBSG and the individual organization RDCIOS.
ISBSG dataset is one of the most extensive SE datasets. It

contains productivity data from software development projects
of different countries and different domains. In China, there is
a non-profit organization, called Beijing Software Cost
Evaluation Alliance(BSCEA), which is responsible for
collecting data from Chinese software industry. We referred
the combined data from ISBSG and BSCEA as ISBSG. We
used ISBSG as the industry data.

Besides industry dataset from ISBSG, we also investigated
one individual organization RDCIOS. RDCIOS uses
SmartDev, which is a software development support platform
developed by RDCIOS, to manage and monitor their projects.
There are more than 300 developers collaborating via this
platform and more than 100 projects are maintained in
SmartDev.

B. Programming Language Categories
Programming languages have evolved from the first

generation into the fifth generation [8]. The first generation
languages (1GL) are called machine languages. The second
generation languages (2GL) are assembly languages. The third
languages (3GL) belong to high-level languages, which include
hundreds of different languages that are widely used by
programmers nowadays. The fourth generation languages (4GL)
refer to the languages that aim to provide a higher level of
abstraction to the internal computer hardware details. Moreover,
some researchers proposed the fifth generation languages(5GL),
which are mainly used in artificial intelligence research to build
specific programs. But they are still in the research stage.

Obviously, the productivity of 3GL and 4GL is much
higher than 1GL and 2GL [8] [10]. In practices, the boundary
between the 3GL and 4GL is quite blurry. The 4GL inherited
most of characteristics of 3GL. While some advanced 3GL like
Python, Ruby, and Perl, combined some features of 4GL in the
general-purpose environment of 3GL. Libraries with the
features of 4GL have been developed for most popular 3GL.

In our study, we focused on investigating the productivity
differences both in 3GL and 4GL languages. HLPL mainly
refer to the 3GL and 4GL[7,9]. Considering the blurred
boundary between 3GL and 4GL, we revisited the

programming languages by classifying them into four new
categories based on the evolution of HLPL [7, 8, 10]:

• Procedure-Oriented (PO) Languages: the early 3GL
languages are used for writing programs that are more
or less independent from a particular type of computer,
called procedure-oriented languages. This category
includes Basic, C, COBOL, FORTRAN, etc. The PO
languages belong to compiled languages[9];

• Object-Oriented (OO) Languages: after PO languages,
OO languages emerged as the 3GL, which are used for
supporting a programming paradigm based on the
concept of “object”, such as: C++, Java, C# and Ada.
The OO languages belong to compiled languages too;

• Script Languages (SL) Languages: script languages are
designed to support scripting special run-time
environments that can automate the executions of
tasks. They already have some features of 4GL, for
example, they don’t need to be compiled to produce
results. Javascript, Python, Ruby, Perl are popular
used. The SL languages usually refer to interpreted
languages[9,10].

• Visual and Database (VD) Languages: The VD
languages are designed for facilitating the development
of web page and the access to database, such as T-
SQL, HTML, JSP, etc.

C. Metrics
In ISBSG, the size of software projects is measured by

Function Point (FP), and the development effort is measured by
Personal Hours (PH). Therefore, we define the productivity Pfp
as follows.

 =
pointsfuntion

effort developing
fpP (1)

In RDCIOS, the size of software projects is measured by
lines of code, and the related time is recorded. Therefore, we
define the productivity Ploc as follows, t denotes the given time,
such as an hour, a week.

t

 lines code=locP (2)

Although the equations of productivity are different for the
two datasets, both metrics can reflect the level of productivity
for each dataset. It is safe to draw conclusions towards
productivity differences based on these two metrics.

D. Data Preparation
In this section, we describe how we collect and prepare data

from ISBSG and RDCIOS.
1) ISBSG

The dataset of ISBSG covers a wide variety of the software
industry, which spans 27 years, including 8,113 projects.
97.5% projects could measure the productivity by Pfp, and most
projects were developed by simple language. The information
of the original dataset is shown in TABLE I.

The process of data collection includes two steps. First, we
excluded the data according to the two criteria: (I) projects that
are rated as C or lower score in terms of data quality levels that
are provided by ISBSG [5]. (II) projects that have abnormal
productivity (Pfp > 100).

527527527

TABLE I. THE DATASETS INFORMATION OF ISBSG

Original Dataset Filtered Dataset
Time Span 1989-2016 PO 1218
Dataset Size 8113 OO 1486
Projects 8113 SL 191
Languges > 100 VD 606
 Sum 3501

TABLE II. THE DATASETS INFORMATION OF RDCIOS

Original Dataset Filtered Dataset
Time Span 2016.8-2017.5 PO 100
Dataset Size 4087commits OO 210
Projects 181 SL 379
Languges 12 VD 51
 Sum 740

According to the exclusion criteria, 56.8% projects are
filtered out. We further divided the data into four groups
according to the four language categories introduced in section
II-B. The final dataset contains 3501 records as shown in
TABLE I. Each record denotes the productivity of each project,
measured by hours per function point (PH/FP).

2) RDCIOS
In RDCIOS, the developers submitted their codes to

SmartDev via commits. Developers recorded the time they
spent on each commit by appending the effort expression (e.g.,
“effort=8”) to the commit message. SmartDev can
automatically collect effort data from commit messages. By
leveraging this functionality, we can conveniently collect the
productivity data of each commit.

The process of data collection is as follows: First, we
selected the projects, and collected the commit data to obtain
the original dataset. We selected the projects based on two
criteria: (I) highly active projects; (II) the source codes are
well-managed in SmartDev.

Then we collected all the commits of the selected projects
from Git repository by executing ‘git diff’, and collected the
effort data for each commit. We only collected the commits
that contain the effort information. Because the productivity is
measured based on codes in RDCIOS, we also excluded the
commits that mainly contain documents, and quite few codes.
In total, 4087 commits were collected as shown in TABLE II.

After obtaining the original dataset, we divided the dataset
into four language categories, and calculated the individual
productivity according to the Equation (2). The final dataset
contains 740 records. Each record denotes the lines of code of
individuals per hour (Loc/PH).

III. EMPIRICAL AYALYSIS
In this section, we present the empirical analysis on the

three research questions.

A. RQ1: Whether the productivity for the four language
categories is significantly different?
We answer the RQ1 from two aspects: whether the

productivity differences across the four categories and within
each category are statistically significant.

Since the distribution of datasets is not normal, we apply
the nonparametric Kruskal-Wallis test and Mann-Whitney test
to check in ISBGSG and RDCIOS respectively. We use 95%
as the confidence level.

TABLE III. THE RESULTS OF THE PAIRED-SAMPLES TEST IN ISBSG

Group PO OO SL VD
PO NA 0.0000 0.0000 0.0000
OO 0.0110 0.0000
SL 0.0346
VD NA

TABLE IV. THE RESULTS OF THE PAIRED-SAMPLES TEST IN RDCIOS

Group PO OO SL VD
PO NA 1.0000 0.0000 0.2135
OO 0.0000 0.2135
SL 0.2031
VD NA

a. The statistically significant results are highlighted.

1) RQ1.1: Is the productivity across the four language
categories significantly different in the software industry and
the individual organization respectively?

a) ISBSG
We first performed the Kruskal-Wallis test to check

whether the productivity differs with different categories in
ISBSG. The p-value equals to 0.00, which means that the
productivity differences across the four categories are
statistically significant.

Then we used the Mann-Whitney test to investigate
whether productivity between any paired categories is
significantly different. The results are shown in TABLE III.
We can see that the p-value for each two paired categories is
less than 0.05. Therefore, the productivity is significantly
different between any two categories.

b) RDCIOS
Similarly, we first checked whether the productivity differs

with different categories. The p-value equals to 0.00, which
means the productivity differences are significant across the
four categories in RDCIOS. Then we performed the paired-
samples test, and the results are shown in TABLE IV. We
observed that only the SL category significantly differs with
the PO and OO categories. The VD category shows no
difference with any other categories.

Finding 1.1: regarding the four language categories, the
programming productivity is significantly different across the
four categories in ISBSG, but the SL category shows
significant differences with the PO and OO categories in
RDCIOS. It shows that the individual differences exist. If they
simply use industry benchmark to conduct effort estimation
without self-adjusted, the estimation variation will be too large
to control.

2) RQ1.2: Is the productivity within each language
category significantly different in the software industry and
the individual organization respectively?

a) ISBSG
We first carried out the Kruskal-Wallis test. The results are

shown in TABLE V.

TABLE V. THE DIFFERENCES OF PRODUCTIVITY WITHIN EACH
LANGUAGE CATEGORY IN ISBSG

Item PO OO SL VD
H 25.57 132.05 26.92 65.21
p-value 0.000 0.000 0.008 0.000

a. The statistically significant results are highlighted.

528528528

TABLE VI. THE RESULTS OF THE PAIRED-SAMPLES TEST IN ISBSG

PO SL

Language Cobol Easytr-
ieve Fortran Pascal PL/I ABAP Language Java-

Script Natural Perl PHP Python Shell Unix
Shell

C 0.9345 0.1111 0.2571 0.0025 0.0025 0.0140 Groovy 0.2150 0.3260 0.052 0.1290 0.8170 0.973 0.031
Cobol 0.1022 0.2711 0.0216 0.0000 0.0052 JavaScript 0.0050 0.020 0.0050 0.1990 0.015 0.003
Easytrieve 1.0000 0.3429 0.5363 0.0091 Natural 0.140 0.1350 0.643 0.086 0.224
Fortran 0.0828 0.8677 0.0386 Perl 0.6130 1.0000 0.050 0.207
Pascal 0.0472 0.0073 PHP 1.0000 0.035 0.57
PL/I 0.0000 Python 0.720 1.00

ABAP NA Shell 0.012
Unix shell NA

OO VD

Lang-
uage C++ Java Power

Builder
Visual
Basic

Visual
Studio
.Net

Visual
FoxPro

Lang-
uage

ASP
.Net Html Ingres JSP Oracle PL/

SQL Pro*C SQL

C# 0.0270 0.000 0.0006 0.0010 0.010 0.0100 ASP 0.460 0.460 0.170 0.076 0.117 0.3109 0.0052 0.008

C++ 0.007 0.2322 0.0650 0.500 0.0700 ASP
.Net 0.830 1.000 0.234 0.721 0.1775 0.5387 0.651

Java 0.8643 0.3490 0.260 0.0900 Html 0.490 0.062 0.938 0.0899 0.1741 0.455
Power
Builder 0.7150 0.150 0.0500 Ingres 0.079 0.458 0.1554 0.3579 0.920

Visual
Basic 0.390 0.1200 JSP 0.030 0.2917 0.0413 0.037

Visual
Studio
.Net

 0.150
Oracle 0.0001 0.0340 0.015

PL/SQL 0.0073 0.000

Visual
FoxPro NA Pro*C 0.369

SQL NA
a. The statistically significant results are highlighted

As shown in TABLE V. , the p-value is less than 0.05 in
the four categories, which means that productivity differences
within each language category are significant. Therefore, at
least one language within each category differs with other
languages. We further carried out the paired-samples test by
using the Mann-Whitney test to find out the root cause. The
detail results are shown in TABLE VI.

In the PO category, we observed that the productivity of
ABAP differs with other languages. This can be explained that
the variation tested by using the Kruskal-Wallis test is mainly
caused by ABAP. ABAP is not a popular language, which is
designed primarily for business purposes. Most of other
languages show no significant difference with each other in the
PO category. In the OO category, we found that the
productivity variation is mainly caused by C#. In the SL and
VD categories, the p-value for most paired languages within
each category is greater than 0.05, which means that the
productivity is not significantly different between most paired
languages in these two categories.

Based the above statistical test, we can see that the four
categories can distinguish HLPL by productivity.

b) RDCIOS
We first carried out the Kruskal-Wallis test. The results are

shown in TABLE VII. The dataset of the PO category contains
only C language, and cannot perform the Kruskal-Wallis test
and Mann-Whitney test.

We observed that the p-value is less than 0.05 in the other
three categories, which means that there are large productivity
differences of different languages within each category. At
least one language differs with the others. Therefore, we further
carried out the paired-samples test to find out the root cause.

TABLE VII. THE DIFFERENCES OF PRODUCTIVITY WITHIN EACH
LANGUAGE CATEGORY IN RDCIOS

Item OO SL VD
H 6.52 49.91 9.13
p-value 0.011 0.000 0.010

a. The statistically significant results are highlighted

TABLE VIII. THE RESULTS OF THE PAIRED-SAMPLES TEST OF THE SL
CATEGORY IN RDCIOS

Language
RDCIOS_SL

IML Javascript PHP Python Ruby Shell
IML NA 0.1438 0.1887 0.2409 0.4620 0.9614
Javascript 0.5472 0.0431 0.0272 0.0000
PHP 0.1415 0.0417 0.0000
Python 0.2261 0.0000
Shell NA

a. The statistically significant results are highlighted

The OO category includes two languages: Java and C++.
The p-value equals to 0.011. But C++ only has 10 items, its
proportion accounts for less than 5% in this category. It implies
that the effect of C++ on the OO category can be ignored.

TABLE VIII. shows the results of the paired-samples test
for the SL category. The productivity of shell differs with
JavaScript, PHP and python. Likewise, we observed that the
productivity of shell also differs with JavaScript, PHP in
ISBSG.

The VD category includes SQL, JSP and HTML languages,
the p-value of any paired languages is all greater than 0.05,
which means the productivity of different languages in the VD
category shows no significant difference.

529529529

Finding 1.2: regarding the programming languages within
each category, the productivity of most languages is not
significant different between each other in ISBSG and
RDCIOS respectively. But in ISBSG, ABAP and C# show
significant differences with other languages within their related
categories.

B. RQ2: What are the relative productivity levels of the four
language categories for the software industry and
individual organizations respectively?
We use the mean and coefficients of variation (CV) [4, 5]

to reflect relative productivity levels of the four language
categories for ISBSG and RDCIOS. To obtain the CV of each
category, we divide the standard deviation by the mean.
Relative productivity levels are calculated by the following two
steps: (I) we set the productivity level of the PO group to 1; (II)
given the mean of PO group m, we obtain the productivity
level of other groups by dividing their means by m. Higher
value indicates higher productivity levels.

In RQ1.2, we found that ABAP and C# show significant
differences with other languages within each category in
ISBSG. There are 1218 items in the ISBSG dataset that belong
to the PO category. Among the 1218 items, the proportion of
ABAP items only accounts for 4.7%, which is relatively small
compared to other languages. We compare the differences of
the means and median between including and excluding ABAP
in the PO group. The result shows that such differences are
much small. Similarly, the proportion of C# items accounts for
4.58% in the OO group with 1486 items. The items of C# also
have little effect on the means and median of the OO group.
Therefore, we calculate the means of the PO and OO groups
based on the whole dataset.

In RDCIOS, we also found that Shell shows significant
differences with JavaScript, PHP and python. The proportion
of Shell items accounts for 14.5% in the SL group with 379
items. The mean of the SL group including and excluding Shell
are 7.93 and 8.85 respectively. The variation is also small.
Therefore, we calculate the mean of the SL group based on the
whole dataset. Based on the above analysis, we calculate the
population means of ISBSG and RDCIOS based on their whole
datasets.

Besides ISBSG and RDCIOS, we also compared our results
with the productivity of three related studies: IBM2013,
reported by Capers Jones [4], ISBSG2012, reported by Andrew
Binstock [25], and ISBSG2016, reported by Luigi Lavazza [5].
Capers Jones reported IBM software productivity of a few
popular programming languages based on the data of projects
in IBM before 2013. The productivity was measured by
function points per month. Base on the ISBSG dataset, Andrew
Binstock and L. Lavazza performed an empirical study on the
productivity of programming languages in 2012 and 2016
respectively. They also selected a few popular languages.

From the three related studies, we can obtain the
productivity of programming languages, measured by function
points per time. Then we divided the data into the four
language categories, and calculated their productivity levels
and CV. Considering the productivity measured by different
metrics, we converted the productivity measured by personal
hours per function point (PH/FP) to function points per
personal hour (FP/PH) to keep a consistent format. As the

datasets from existing literatures don’t include raw data, only
contain average productivity of programming languages, we
didn’t calculate the CV for those datasets.

TABLE IX. shows the output of the productivity levels and
CV in the software industry and individual organizations.
ISBSG2012 and ISBSG2016 do not provide data of the SL
group. Since the population means of datasets in the software
industry and individual organizations are all reasonable, we
further explore whether the productivity levels of four
categories are significant different by comparing relative
productivity levels and CV.

The comparison of relative productivity levels: Fig. 1
shows the comparison of productivity levels between the
software industry and the individual organizations. We can
observe that: (I) with the evolution of HLPL from the PO to the
VD category, the productivity generally becomes more
productive in the software industry. However, there is a
difference in individual organizations that: the productivity of
the SL category is declining. (II) The two individual
organizations present a quite similar trend of productivity
levels in the last three categories. However, in RDCIOS, the
PO category is the highest productive category, but in IBM, the
PO category is the lowest one.

TABLE IX. THE SUMMARY REPORT AND PRODUCTIVITY LEVELS FOR THE
FOUR LANGUAGE CATEGRORIES

Dataset Item PO OO SL VD

ISBSG

Mean[PH/FP] 16.507 13.645 9.75 9.56
Converted
Mean[FP/PH] 0.061 0.073 0.103 0.105

Levels 1.00 1.21 1.69 1.73
StDev 15.954 14.548 8.32 10.58
CV 96.65% 106.62% 85.33% 110.67%

RDCIOS

Mean[Loc/PH] 13.11 12.55 8.85 10.57
Levels 1.00 0.96 0.68 0.81
StDev 23.41 15.48 17.60 12.55
CV 178.57% 123.40% 198.81% 118.74%

IBM
2013

Size 7 10 6 5
Mean[FP/PM] 7.273 11.50 9.27 11.26
Levels 1.00 1.58 1.27 1.55

ISBSG
2012

Size 4 4 NA 2
Mean[PH/FP] 15.98 11.75 NA 8.45
Converted
Mean[FP/PH] 0.063 0.085 NA 0.118

Levels 1.00 1.36 NA 1.89

ISBSG
2016

Size 3 4 NA 2
Mean[FP/PM] 18.53 19.35 NA 25.85]
Levels 1.00 1.04 NA 0.94

Fig. 1. The comparison of productivity levels of thefour language categories

530530530

Fig. 2. The CV comparison of the four language categories

The comparison of CV: Fig. 2 shows the comparison of
CV between ISBSG and the organization RDCIOS. We can
observe that RDCIOS has higher CV than ISBSG, which
indicates that data size in ISBSG is much more concentrative
and the dispersion is small, while the RDCIOS data looks more
disperse. The reason is that continuous process improvement
has improved its productivity since 2017.

Finding 2: The results strongly indicate that: in the scope
of the software industry, the relative productivity levels are
gradually increasing with the evolution of HLPL. However, the
individual organizations don't always keep the same increasing
trend. For both individual organizations, the productivity of SL
category is declining, and they have similar trends of relative
productivity levels except for the PO category. In addition, the
CV of RDCIOS shows larger than ISBSG, especially in the PO
and SL categories.

C. RQ3: Regarding an individual organization, can the
productivity performance baseline be established based on
the four categories to support statistical process control?
Many software organizations conduct effort estimation

based on their productivities. Particularly, a CMMI-adopted
organization needs to establish the process performance
baseline to support quantitative management. In RQ1 and RQ2,
we observed that individual differences existed between the
software industry and the individual organization both in
productivity differences and relative productivity levels across
the four language categories. It indicates that software
organizations need to establish the productivity baselines based
on their own data, rather than simply adopt the industry
baseline. Proper productivity baselines can support the
statistical process control. In RQ3, we aim to illustrate whether
the individual organization can establish its productivity
baseline based on the four language categories.

We applied mean and standard deviation charts (Xbar-S) to
establish the Statistical Process Control (SPC) of personal
average productivity. The process of constructing dataset for
the Xbar-S charts includes: (I) we considered lines of code per
week as the productivity metric. We obtained the individual
weekly productivity for each category. (II) Most projects in
RDCIOS adopted the agile development model, and took one
month as a milestone, which included requirement analysis,
design, coding and test. Therefore, we calculated the average
productivity of each successive four weeks as a control point.
Each control point denotes the productivity per month,
measured by lines of code per week. The Xbar-S charts of the
four language categories are shown Fig. 3.

Fig. 3. The Xbar-S Charts of the four language categories in RDCIOS

531531531

We can observe that: (I) the productivity fluctuations of the
four language categories are balanced in the first several
months, which means that the control mean of each language
category is statistically meaningful. Therefore, the individual
organization can generate its productivity baseline by using the
average productivity. (II) the productivity has improved
obviously in the last few months. The baseline may be updated
if the upward trend is kept.

Finding 3: The statistical process control shows that the
programming productivity of the four language categories is
mostly stable. The average productivity of the four language
categories can be used to establish a productivity baseline for
the investigated organization.

IV. THREATS TO VALIDITY
Threat to internal validity lies on experimental bias. In

ISBSG, the highest quality data and project size measured by
function points, are rated by ‘A’, followed by ‘B’,’C’ and ‘D’.
To keep the data in a high quality, we selected the data rated by
‘A’ or ‘B, and quality of project size rated by ‘A’ or ‘B’. In
RDCIOS, we measured productivity of the organization based
on the lines of code, without considering the documents, which
may not reflect the productivity comprehensively. Therefore,
we excluded the commits that mainly contain documents, and
quite few codes.

Threat to external validity is related to the generalizability
of our findings. In this work, we analyzed productivity of
different languages in software industry ISBSG and the
individual organization RDCIOS. Although we collected data
from real-world datasets, the findings may not be generalizable
to all the other software organizations. The more stable the
process is, the more general the productivity baseline becomes.

V. RELATED WORK
Literatures related to the productivity of programming

languages mainly focus on two aspects: (I) the metrics of
productivity. (II) The variations across different languages.

A. The Metrics of Productivity
Different researchers used different metrics to measure

productivity. Petersen [13] performed a systematic review on
the measurements and predictions of software development
productivity, which focused on quantifiable approaches, such
as metric spaces and data envelopment analysis. In [11] authors
investigated productivity metrics in agile software development,
including source lines of code per time, function points tasks
completed per time. Other approaches have been proposed,
including productivity metrics based on different development
roles [14], productivity measure by resolved issues per month
[12]. In summary, lines of code and function points are largely
used when measuring productivity. Function points work well
when measuring productivity for projects that requirements are
well documented and stable [21].

B. The variations across different languages
Previous studies investigated the variations across different

languages mainly based on three aspects: productivity,
development and maintenance. Premraj et al. proved that the
choice of the most appropriate programming language could
affect their productivity and final development costs [6].

Sebastian Nanz et al. [17] performed an empirical study to
investigate which language makes developers more productive;
Myrtveit et al. investigated whether development in C++ was
more productive than development in C [20]; In [3] authors
explored the lines of code of different languages per function
point. Similarly, C. Jones [2] analyzed the productivity levels
of different languages, which was enriched in 2013 to refine
further productivity of the languages based on data of IBM
projects [4].

Another two studies [25, 5] analyzed productivity levels
based on the ISBSG dataset in 2012 and 2016 respectively,
which are very similar to our study, but only analyzed a few
popular languages. In addition, a few studies [19, 21, 22]
investigated whether programming languages affected
productivity in Open Source projects. For the development and
maintenance variations, some studies [1, 15, 16] compared the
development performances of different languages from various
aspects: program length, runtime efficiency, etc. Other studies
focused on the challenging and pressures when the
programming languages upgraded [23], quantifying the impact
of programming languages on software development and
maintenance 18], and investigating the impact of programming
languages choices on the maintainability of OSS projects [24].

Some studies show that the productivity varies among
different programming languages. But little research work has
been done to consider the programming language categories
and comprehensively analyze the productivity variations across
different languages. Our work fills that gap.

VI. CONCLUSION AND FUTRUE WORK
In this paper, we proposed a classification to divide HLPL

into four categories based on their evolution, and revisited their
productivity variations in ISBSG and RDCIOS. The results
show that: (I) the programming productivity varies across the
four categories in ISBSG and RDCIOS, which shows that the
four categories of HLPL are reasonable. (II) Individual
differences exist between ISBSG and RDCIOS. In ISBSG, the
relative productivity levels are gradually increasing with the
evolution of HLPL. However, in RDCIOS, it does not always
keep the same increasing trend. (III) We present an example to
illustrate that the productivity baseline can be established based
on the four categories for RDCIOS and the statistical process
control can be applied based on its baseline. These results can
help managers better understand the programming productivity
variations across different languages, and guide the software
organizations to establish their productivity baselines, rather
than simply adopt the industry baseline. The established
baselines can support the quantitative management for
organizations.

In RDCIOS, we analyzed the productivity only based on
submitted codes. In the future, we plan to investigate the
submitted document-products at the same time. In addition, we
also plan to establish the relationship between submitted
products and the tasks created in JIRA to analyze the
productivity of different types of issues.

ACKNOWLEDGMENT
We appreciate anonymous reviewers for their supportive

and constructive comments. This research is supported by

532532532

National Natural Science Foundation of China under Grant Nos.
61432001.

REFERENCES
[1] Prechelt, “An empirical comparison of C, C++, Java, Perl, Python,

Rexx, and Tcl for a search/string-processing program”[J]. IEEE
Computer, 2002.

[2] Jones, C. “Programming Languages Table”, Software Productivity
Research, Inc. Release 8.2. March 1996.

[3] Marketwired, “Quantitative Software Management, Inc. Function Point
Languages Table 5.0”. April 2013.
http://www.qsm.com/resources/function-point-languages-table

[4] Jones, C. “Function points as a universal software metric”. ACM
SIGSOFT Software Engineering Notes 38.4, 2013.

[5] Luigi Lavazza, Sandro Morasca, Davide Tosi, “An empirical study on
the effect of programming languages on productivity”, Proceedings of
the 31st Annual ACM Symposium on Applied Computing, 2016. pp:
1434-1439.

[6] Premraj, R., Shepperd, M.J., Kitchenham, B.A. and Forselius, P. 2005.
“An Empirical Analysis of Software Productivity over Time”, 11th
IEEE International Software Metrics Symposium, METRICS 2005.

[7] Programming Languages, “The University of TOLEDO college of
Engineering”.
http://cset.sp.utoledo.edu/sample/engt1050/engt1050_languages.html

[8] “The different types of languages”,
http://landofcode.com/programming-intro/computer-programming-
languages.php.

[9] Ken Bigelow, “Levels of Programming Languages”, http://www.play-
hookey.com/computers/language_levels.html

[10] Wikipedia, the free encyclopedia, “High-level programming language”.
https://en.wikipedia.org/wiki/High-level_programming_language

[11] Syed Muhammad Ali Shah, Efi Papatheocharous, Jaana Nyfjord,
“Measuring productivity in agile software development process: a
scoping study”, International Conference on Software and System
Process, 2015.

[12] Athanasiou, D.; Nugroho, A.; Visser, J.; Zaidman, A., “Test Code
Quality and Its Relation to Issue Handling Performance”, Software
Engineering, IEEE Transactions on , 2014, vol.40, no.11, pp.1100-1125

[13] Petersen, K. “Measuring and predicting software productivity: A
systematic map and review”. Information and Software Technology. 53,
4 (2011), pp:317–343.

[14] Hernández-López, A., Colomo-Palacios, R. and García-Crespo, Á..
“Software Engineering Job Productivity—a Systematic Review”.
International Journal of Software Engineering and Knowledge
Engineering, 2013, pp:387–406.

[15] L. Prechelt, “An empirical comparison of seven programming
languages”, IEEE Computer, 2000, vol. 33, no. 10, pp. 23-29..

[16] L. A. Meyerovich , A. S. Rabkin, “Empirical analysis of programming
language adoption,” International Conference on Object Oriented
Programming Systems Languages & Applications, 2013, pp. 1–18.

[17] S. Nanz and C. A. Furia. “A comparative study of programming
languages in rosetta code”. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, 2015, pages 778– 788.

[18] P. Bhattacharya, I. Neamtiu, “Assessing programming language impact
on development and maintenance: A study on C and C++”, International
Conference on Software Engineering, 2011, pp. 171-180.

[19] T. E. Bissyandé, F. Thung, D. Lo, L. Jiang, L. Réveillère, “Popularity
interoperability and impact of programming languages in 100000 open
source projects”, Proceedings of the 2013 IEEE 37th Annual Computer
Software and Applications Conference, 2013, pp. 303-312.

[20] I. Myrtveit and E. Stensrud. “An empirical study of software
development productivity in C and C++”. In NIK'08.

[21] J. Krein, A. MacLean, D. Delorey, C. knutson, and D. Eggett. “Impact
of programming language fragmentation on developer productivity: a
source forge� empirical� study”.� International Journal of Open
Source Software and Processes.,�2010,�pp:41–61.

[22] P. Delorey, Charles D. Knutson, and Scott Chun. “Do Programming
Languages Affect Productivity? A Case Study Using Data from Open
Source Projects”. In 1st International Workshop on Emerging Trends in
FLOSS Research and Development, 2007.

[23] Urma R G, Orchard D, “Mycroft A. Programming language evolution
workshop report” [C]// The Workshop on Programming Language
Evolution. ACM, 2014:1-3.

[24] Celia Chen, Lin Shi, Kamonphop Srisopha, “Maintainability Index
Variation Among PHP, Java, and Python Open Source Software
Projects”, In Proceedings, the 27th Annual IEEE Software Technology
Conference(STC), 2015.

[25] Andrew Binstock, Peter Hill, The Comparative Productivity of
Programming Languages, 2012. http://www.drdobbs.com/jvm/the-
comparative-productivity-of-programm/240005881

533533533

